Когда я работал над набором данных для машинного обучения, мне пришлось сохранить его в файл CSV после анализа. Для анализа данных я использовал библиотеку Pandas, поэтому мне пришлось сохранить набор данных в фрейме данных в файл CSV.

Затем я использовал функцию pandas to_csv(), чтобы сохранить его в файле CSV. Кроме того, исследуя Интернет, я нашел еще два способа сохранить список в CSV, которые я объяснил в этом уроке.

Содержание

С помощью Pandas

Pandas — это библиотека на основе Python для манипулирования и анализа данных.

Как вы знаете, в Pandas есть структура данных, называемая фреймом данных, в которой данные хранятся в виде строк и столбцов. Итак, в Pandas есть несколько функций, которые позволяют сохранять фрейм данных в разных форматах файлов, например CSV.

Pandas предоставляет функцию to_csv(), которая сохраняет кадр данных в файле CSV.

Синтаксис:

dataframe.to_csv('file_name.csv')

Где:

  • dataframe: это фрейм данных, содержащий двумерные данные, которые вы хотите записать или сохранить в файл CSV.
  • to_csv (‘имя_файла.csv’): эта функция вызывается для фрейма данных и принимает имя файла аргумента с расширением CSV. Эта функция сохраняет или записывает данные кадра данных в указанное имя файла CSV в вашем каталоге.

Например, откройте командную строку на своем компьютере, введите «python» и нажмите Enter, чтобы открыть оболочку Python.

После открытия оболочки Python импортируйте библиотеку панды, используя приведенный ниже код.

import pandas as pd

Создайте список, который хотите сохранить в формате CSV, как показано ниже.

daily_task = ['Wake up at 5:00 AM', 'Take a Shower', 'Prepare breakfast', 'Start remote work']

В приведенном выше примере создается список с именем daily_task. Чтобы сохранить этот список в формате CSV, преобразуйте его в словарь, используя приведенный ниже код.

task_dict = {'task': daily_task}

В приведенном выше примере был создан словарь с именем Task_dict, который содержит ключ Task и список значений Daily_task.

Метод to_csv() работает с фреймом данных, поэтому преобразуйте Task_dict в фрейм данных, используя приведенный ниже код.

task_df = pd.DataFrame(task_dict)

Теперь вызовите to_csv() с именем файла daily_task.csv, как показано ниже.

task_df.to_csv('daily_task.csv')

Записать список в CSV Python с помощью Pandas

Посмотрите на эту строку кода: ‘task_df.to_csv(‘daily_task.csv’)’; эта строка сохраняет все данные фрейма данных Task_df в файле daily_task.csv в вашей системе. Он создает в вашей системе новый файл с именем daily_task.csv и записывает в него все данные dataframe Task_df.

Файл сохраняется на моем компьютере в папке «C:\Users\saura», как показано на рисунке ниже.

Просмотр списка в преобразованном файле CSV

Итак, чтобы просмотреть его, откройте CSV-файл daily_task, как показано на рисунке выше. Вы можете увидеть все указанные вами данные в списке.

С использованием модуля CSV

Модуль «CSV» является частью библиотеки Python, в которой есть метод csv.writer(), который позволяет записывать список данных в файл CSV.

Например, возьмите список daily_tasks, который вы создали в разделе выше.

Импортируйте модуль «csv», как показано ниже.

import csv

daily_task = ['Wake up at 5:00 AM', 'Take a Shower', 'Prepare breakfast', 'Start remote work']

Теперь используйте приведенный ниже код, чтобы сохранить ежедневные задачи из списка в формате CSV.

with open('task.csv', 'w', newline='') as f:
     
    write = csv.writer(f)
    write.writerows([daily_task])

В приведенном выше коде откройте файл CSV с именем Task.csv в режиме записи, указав «w»; если файл Task.csv не существует, он создает новый в каталоге по умолчанию.

После этого он создает объект csv.writer с помощью метода write = csv.writer(f). Затем он берет каждую задачу из daily_task и записывает ее в CSV-файл Task.csv с помощью метода writerow().

с использованием модуля CSV

Как вы можете видеть на рисунке выше, список ежедневных задач записывается или сохраняется в файле с именем Task.csv. Но он сохраняет список функций построчно в файле Task.csv. Это потому, что наша цель — узнать, как сохранить список в формате CSV.

С использованием Numpy

Библиотека Python Numpy используется для больших массивов или многомерных наборов данных. Его функции позволяют выполнять некоторые операции над этими массивами.

Давайте возьмем пример. Сначала создайте список продуктов с их названиями и категориями, как показано ниже.

import numpy as np

products = [
    ['Apple', 'Fruit', '10', '2.5'],
    ['Banana', 'Fruit', '15', '1.8'],
    ['Milk', 'Dairy', '5', '3.2'],
    ['Bread', 'Bakery', '20', '2.0'],
    ['Eggs', 'Dairy', '30', '1.5'],
    ['Chicken', 'Meat', '8', '5.7']
]

Чтобы сохранить список продуктов в файл CSV, в Numpy есть функция savetxt(), которая сохраняет двумерный массив в текстовый файл.

Используйте функцию np.savext(), чтобы сохранить список продуктов в файл CSV, используя приведенный ниже код.

np.savetxt("products.csv",
        products,
        delimiter =", ",
        fmt ='% s')

В приведенном выше примере имя файла product.csv передается функции np.savext() в качестве разделителя, который разделяет список продуктов в файле; разделителем является запятая(, ), а формат — «$ s».

с использованием Numpy

На рисунке выше показано, как файл product.csv открывается в MS Excel. Этот файл был создан с помощью np.savext(). Он содержит список продуктов в виде таблицы.

Используя функцию np.savext(), вы можете сохранить список в другом формате.

Добавить комментарий